Problem 1.3

Find the angle between the body diagonals of a cube.

Solution

Let \mathbf{r}_{1} and \mathbf{r}_{2} be displacement vectors for body diagonals that have their starting points on adjacent vertices in a unit cube, for example, those shown below.

$$
\begin{aligned}
& \mathbf{r}_{1}=\langle 0,0,1\rangle-\langle 1,1,0\rangle=\langle-1,-1,1\rangle \\
& \mathbf{r}_{2}=\langle 0,1,1\rangle-\langle 1,0,0\rangle=\langle-1,1,1\rangle
\end{aligned}
$$

Use the definition of the dot product between \mathbf{r}_{1} and \mathbf{r}_{2}.

$$
\mathbf{r}_{1} \cdot \mathbf{r}_{2}=\left|\mathbf{r}_{1}\right|\left|\mathbf{r}_{2}\right| \cos \theta
$$

Solve for θ, the angle between \mathbf{r}_{1} and \mathbf{r}_{2}.

$$
\begin{aligned}
\cos \theta & =\frac{\mathbf{r}_{1} \cdot \mathbf{r}_{2}}{\left|\mathbf{r}_{1}\right|\left|\mathbf{r}_{2}\right|} \\
& =\frac{\langle-1,-1,1\rangle \cdot\langle-1,1,1\rangle}{\sqrt{(-1)^{2}+(-1)^{2}+1^{2}} \sqrt{(-1)^{2}+1^{2}+1^{2}}} \\
& =\frac{(-1)(-1)+(-1)(1)+(1)(1)}{\sqrt{3} \sqrt{3}} \\
& =\frac{1}{3}
\end{aligned}
$$

Therefore, the angle between adjacent body diagonals is

$$
\theta=\cos ^{-1}\left(\frac{1}{3}\right) \approx 70.5^{\circ} .
$$

Let \mathbf{r}_{1} and \mathbf{r}_{3} be displacement vectors for body diagonals that have their starting points on opposite vertices in a unit cube, for example, those shown below.

$$
\begin{aligned}
& \mathbf{r}_{1}=\langle 0,0,1\rangle-\langle 1,1,0\rangle=\langle-1,-1,1\rangle \\
& \mathbf{r}_{3}=\langle 1,0,0\rangle-\langle 0,1,1\rangle=\langle 1,-1,-1\rangle
\end{aligned}
$$

Use the definition of the dot product between \mathbf{r}_{1} and \mathbf{r}_{3}.

$$
\mathbf{r}_{1} \cdot \mathbf{r}_{3}=\left|\mathbf{r}_{1}\right|\left|\mathbf{r}_{3}\right| \cos \alpha
$$

Solve for α, the angle between \mathbf{r}_{1} and \mathbf{r}_{3}.

$$
\begin{aligned}
\cos \alpha & =\frac{\mathbf{r}_{1} \cdot \mathbf{r}_{3}}{\left|\mathbf{r}_{1}\right|\left|\mathbf{r}_{3}\right|} \\
& =\frac{\langle-1,-1,1\rangle \cdot\langle 1,-1,-1\rangle}{\sqrt{(-1)^{2}+(-1)^{2}+1^{2}} \sqrt{1^{2}+(-1)^{2}+(-1)^{2}}} \\
& =\frac{(-1)(1)+(-1)(-1)+(1)(-1)}{\sqrt{3} \sqrt{3}} \\
& =-\frac{1}{3}
\end{aligned}
$$

Therefore, the angle between opposite body diagonals is

$$
\alpha=\cos ^{-1}\left(-\frac{1}{3}\right) \approx 109.5^{\circ} .
$$

Note that $\alpha+\theta=180^{\circ}$.

